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We consider a mixture of heavy vapor molecules and a light carrier gas sur- 
rounding a liquid droplet. The vapor is described by a variant of the Klein-  
Kramers  equation, a kinetic equation for Brownian particles moving in a spatially 
inhomogeneous background; the gas is described by the Navie~Stokes  equa- 
tions; the droplet acts as a heat source due to the released heat of condensation. 
The exchange of m o m e n t u m  and energy between the constituents of the mixture 
is taken into account by force terms in the kinetic equation and source terms in 
the Navier-Stokes equations. These are chosen to obtain maximal agreement 
with the irreversible thermodynamics of a gas mixture. The structure of the 
kinetic boundary layer around the sphere is then determined from the self- 
consistent solution of this set of coupled equations with appropriate boundary 
conditions at the surface of the sphere. For this purpose the kinetic equation is 
rewritten as a set of coupled moment  equations. A complete set of solutions of 
these moment  equations is constructed by numerical integration inward from 
the region far away from the droplet, where the background inhomogeneities 
are small. A technique developed in an earlier paper is used to deal with the 
severe numerical instability of the moment  equations. The solutions so obtained 
for given temperature and pressure profiles in the gas are then combined linearly 
in such a way that they obey the boundary conditions at the droplet surface; 
from this solution source terms for the Navie~Stokes  equation of the gas are 
constructed and used to determine improved temperature and pressure profiles 
for the background gas. For not  too large temperature differences between the 
droplet and the gas at infinity, self-consistency is reached after a few iterations. 
The method is applied to the condensation of droplets from a supersaturated 
vapor, where small but significant corrections to an earlier, not fully consistent 
version of the theory are found, as well as to strong evaporation of droplets 
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under the influence of an external heat source, where corrections of up to 40 % 
are obtained. 

KEY WORDS: Kinetic boundary layers; droplet condensation; weak and 
strong evaporation; moment equations; Brownian motion. 

1. I N T R O D U C T I O N  A N D  S U R V E Y  

Kinetic boundary layers occur in gases or gas mixtures near the surface of 
a body that can exchange particles, momentum, or energy with the gas. (1) 
For  systems described by linear kinetic equations with space-independent 
collision operators, accurate analytical and numerical methods have been 
developed for determining the structure of such layers, especially for essen- 
tially one-dimensional geometries (ref. 1-5 and papers quoted therein). The 
accuracy to which physical quantities of interest can be determined from 
linear kinetic equations by now far exceeds the accuracy to which these 
equations themselves apply, even in cases in which nonlinear effects can be 
expected to be small. In order to make further progress, the incorporation 
of at least some nonlinear effects is therefore necessary. 

In a previous paper, (6) hereafter denoted by I, a first step in this direc- 
tion was made. The specific problem considered in I was the growth of a 
small liquid droplet immersed in a mixture of its supersaturated vapor and 
a light inert carrier gas. The vapor was described by means of the Klein-  
Kramers  equation, (7) the kinetic equation for a collection of Brownian 
particles, with additional terms (8) to describe the effects of the temperature 
gradient caused by the release of heat of condensation by the vapor 
particles absorbed by the droplet. The temperature profile in the back- 
ground gas was in turn calculated by solving the stationary heat conduc- 
tion equation for the pure gas with a source term at the droplet surface 
proportional  to the net current of vapor particles. The Klein-Kramers  
equation with a space-dependent collision operator (and with a force term 
designed to incorporate thermodiffusion) was transformed into a set of 
coupled moment  equations. These were then integrated numerically, with 
special procedures developed to overcome the severe numerical instabilities 
inherent in the system. 

In the present paper, a more consistent treatment of the same physical 
system is developed. In Section 2 we introduce a further generalization of 
the Kle in-Kramers  equation that describes a vapor moving in a back- 
ground with arbitrary temperature and pressure profiles. The force term in 
this equation is chosen in such a way that the vapor particle current in the 
Chapman-Enskog  solution of this kinetic equation (1'5'9~ agrees with the 
Navier-Stokes expression for a gas mixture. (1~ The temperature and 
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pressure profiles are in turn determined by solving the Navier Stokes equa- 
tions for the background gas, with source terms describing the collisional 
transfer of momentum and energy from the vapor to the background gas, 
as well as the heat release at the surface. Further details of the iterative 
procedures used to obtain a consistent solution of the kinetic equation for 
the vapor and the Navier-Stokes equations for the background gas are 
given in Section 3; there we also discuss the boundary conditions to be 
applied at the droplet surface and the approximations used to solve the 
kinetic equation (which are those used in I with some improvements). In 
Section 4 we discuss the convergence properties of our scheme with respect 
to the number of iterations and to the order of the various approximations 
used in solving the kinetic equations. 

In Section 5 we discuss the results obtained by applying our procedure 
to the droplet condensation problem for which first results, using a 
preliminary version of the present theory, were already given in I. The 
parameters of the theory were chosen to correspond to the condensation of 
mercury vapor in a background of neon. The dependence of the result 
obtained for the droplet growth rate on the droplet radius and the degree 
of supersaturation is discussed; the influence of an evaporation coefficient 
different from unity is also explored. The nonlinear effects for this system 
turn out to be small, but well in excess of the accuracy obtainable by our 
method. 

In Section 6 we discuss a situation in which larger nonlinear effects 
occur: the strong evaporation caused by an additional external heat supply 
to the droplet. We find that reliable results can be obtained by the present 
version of our method for droplet temperatures up to about 35 % above 
the temperature of the gas mixture at infinity. The final section contains an 
assessment of the methods developed and the results obtained, as well as 
an outlook on further possible developments. 

2. B A S I C  E Q U A T I O N S  

The Klein-Kramers equation for the distribution function P(v, r, t) of 
the velocities v and positions r of an assembly of noninteracting Brownian 
particles of mass m moving in a background medium with temperature 
T =  (k f i )  -1  and undergoing an external force F(r) reads 

m g-v v+z  elv, r,t) (2.1) 

where 7 denotes the friction coefficient of the particles; fl and 7 may 
in general depend on r. By applying the Chapman-Enskog solution 
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procedure, (5'9) one obtains for the relation between current density JB and 
the density nB of the Brownian particles in a state near local equilibrium 

1 I ~ n B ( r )  F(r)  nB(r)l (2.2a) 
JB(r)= -m~(r~ Or fl(r) 

In this paper we shall use (2.1) to describe vapor particles with density 
nv(r) moving in a background gas of density nG(r). If we introduce the 
total density n=nv+nc and the associated ideal gas pressure p =n/fl, we 
can rewrite (2.2a) as 

nv+nv l n p - F  (2.2b) 
J r =  mfly ~r n n 

The phenomenological quantities ~ and F are now chosen in such a 
way that the hydrodynamic relation (2.2b) becomes identical to the 
expression obtained from the hydrodynamics for a gas mixture in which 
the background component is at rest. In such a mixture the vapor velocity 
e v -= s + V v, where s is the hydrodynamic velocity and V v is the diffusion 
velocity, is related to s by s=evPv/p, where Pi denotes the mass density 
of component i. For  the vapor current J v one then obtains from 
hydrodynamics (11 ) 

j V =  YIvCv 

nvp 
- -  V v 

Pc 

.= m H  V 
n 2 I dn__~ (nv p_fiv) d nvnG d lnTl  

pvp~ mvmaD12 dr + drr l n p + c ~ r  n-----~ d-r 
(2.3) 

where D12 is the binary diffusion coefficient and e r  the thermal diffusion 
factor. We can therefore obtain agreement between (2.2b) and (2.3) by 
choosing 

nc 1 
7 = - -  (2.4) 

n mvflD12 
n~ d mv d 

F =  -kctr---~rI+--~-~rp (2.5) 

In the remainder of this paper we shall use (2.1) only for stationary, 
spherically symmetric problems. In such cases the relevant variables are 
the magnitudes of v and r and the direction cosine # = 0- f. 
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The background gas is described by the stationary Navier-Stokes 
equations for a gas at rest, with source terms describing energy and 
momentum transfer from the vapor atoms. The latter quantities are equal 
to minus the divergence of the "heat current" and "pressure tensor" of the 
vapor, evaluated in the rest frame (the actual heat current and pressure 
tensor should be evaluated in the frame moving with e v)- If we take radial 
symmetry into account, we obtain from the heat conduction equation, by 
integrating once with respect to r, an equation for the gas temperature T6: 

dTa c 
2 C - ~ r  = q r +  7 (2.6) 

where 2a is the heat conductivity of the gas and c an integration constant, 
In the pressure equation all convective and viscous terms vanish and the 
radial variation of the gas pressure equals minus the radial component of 
the divergence of the "pressure tensor" 11. If we evaluate the latter in polar 
coordinates, use the fact that only Hrr and Hoo = H #  are nonvanishing, 
and express the latter in terms of Hrr and tr{H} = 3nvkTv,  with Tv the 
vapor "temperature" evaluated in the rest frame, we obtain 

dpG d 1 
dr = - & Hrr + -r (3n v k T v -  3Hrr)] (2.7) 

3 The explicit expressions for qr, Hrr, and 5n vkTv  are 

qr(r)=2~z f ~  dvv2 f+_, 1 

f5 ;+* FI,.,.(r) = 2re dv v z 
- - 1  

 n kT,=2=fo d ,ef', 1 

dl~ lmvv2v#P(v, r, #) (2.8a) 

d u mvV2U2p(v, r,/~) (2.8b) 

dl~ ~rnl vv2p(v, r, It) (2.8c) 

As we shall always consider situations in which the gas mixture far 
away from the droplet is in equilibrium with densities nco o and nvo~ and 
temperature Too, it is convenient to choose To as the unit of temperature 
and to replace all temperatures 7",. by relative temperatures ti = Ti/To~, and 
to express velocities and lengths in terms of the thermal vapor velocity Vth 
and the velocity persistence length l at infinity; these quantities are 

~ t h  = (kTo~/m v)J/z; l = Vth/7 0o (2.9) 

where 700 is the quantity (2.4) evaluated with Too, nGoo, and nvoo. The 
quantities q,., 2c, Hr,., p, n, and p are henceforth understood to be 

822/70/5-6-12 
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expressed in this system of units (e.g., qr in units of ~thkT~l 3) without 
change of notation. Equations (2.6), (2.7), and (2.1) with (2.5) substituted 
then read 

dt G c 
&~-r =qr+7 

dpj d Hrr q 3 (nvtv,,__ Hrr) 
dr dr r 

6q [ 1--,u2 0 ' 0 ( q_ ~ )  )J.~_ 2 
r 0u ~ -  v +(t-1 Vv 

[n G dt l d p , / O  1-/~= ~? , ]  
+~nC~rTrr pTrr)k#& + v ~)JP(v'/'z'r) 

(2.10a) 

(2.10b) 

(2.11) 

For t and p in (2.11) we substitute the expressions 

nv tv+natG 
p = p ~ + n v t v ;  t= (2.12) 

nv+nG 

This involves two approximations. First, the expression Tv in (2.8c) is not 
the vapor temperature, since it is evaluated in the wrong frame, and the 
simple "mixing laws" (2.12) do not apply for mixtures with components 
that move relative to one another. However, since we are only considering 
cases with 

rnv>mG and p v = m v n v ~ m a n G = P G  (2.13) 

in which, moreover, the hydrodynamic velocities are much smaller than the 
thermal ones, such errors are always negligible. Second, the use of the ideal 
gas equation of state for the vapor used in (2.12) and the interpretation of 
t v as a temperature are allowed only near local equilibrium, but not in the 
kinetic boundary layer. The error thus made is somewhat less easy to 
estimate, but in view of the small weight with which tv enters into (2.12), 
the error is again presumably not significant. Further remarks on these 
points are made in Section 7. 

In the numerical examples we shall use for D12 and e~. the expressions 
derived from first-order kinetic theory for a mixture of Lennard-Jones 
gases. For the quantity 7/?~ this, e.g., implies (12) 

= nG tl/2 s * )  
7o n~o~ (2~ *) (2.14) 
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with T* = kT/g12 and •12 = ( E 1 ~ 2 ) 1 / 2  with ei the well-depth parameter in the 
Lennard-Jones potential; (2 II'~)* denotes the reduced f~(~'~) integral for 
the Lennard-Jones parameters ei and cr~ of the two components. For the 
example mercury in neon we take the values 

ev/k = 975 K, ~v = 3.10 
(2.15) 

aG/k = 34.9 K, cr~ = 2.78 

The choices made for D,2 and c~ r are the same as in I, to which we refer 
for further details and discussions. 

3. THE  B O U N D A R Y  V A L U E  P R O B L E M  A N D  ITS S O L U T I O N  

The central task in developing a theory of droplet condensation and 
evaporation is the solution of the coupled set of equations (2.10) and 
(2.11), with the auxiliary definitions (2.8) and (2.12), for given boundary 
conditions at infinity and at the droplet surface r = R. From the half-range 
completeness property of the fundamental solutions, (1' 13) which was proven 
for the planar case with homogeneous background, and which we assume 
to hold in the present case as well, we expect that the solution of (2.11) is 
uniquely determined when P(v, #, R) for # > 0 and the limiting density for 
r ~ ~ are specified. For  definiteness we shall assume in this section that 
the surface r =  R behaves as a "black droplet, ''(1'4~ i.e., that it absorbs all 
vapor molecules impinging upon it and emits vapor particles with a 
Maxwellian distribution at the droplet temperature tD and with the 
corresponding saturation density ns(tD). Hence we impose the boundary 
conditions 

P(v, #, R) = ns(tD) ~b0(v; to) for /~ > 0 

q~o(V; tD) = (2~to) 3/2 exp(-vZ/2tD) 

(3.1a) 

(3.1b) 

and 

f+l 
lim 2~ dvv 2 d#P(v,#,r)=nvo~ (3.1c) 

r ~ o o  --1 

The solution of (2.10) is determined once we specify P~o~ =naoo, 
t ~  = 1, and ta(R), which can be used to determine the integration 
constant c in (2.10a). The limiting temperature tG(R ) cannot be put equal 
to to due to the temperature slip phenomenon~ For  the temperature slip 
we use the results obtained in an earlier paper/~5~ for a gas of Maxwell 
molecules. 
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The results of ref. 15 for large R can be described for sufficiently small 
t o -  1 by the asymptotic expression 

t O - 1 
to(R)  = Zl(R) = 1 (3.2a) 

1 + 2.7713R ~ + 4.97/~ - 2 -  2R 3 

with R = R/lG and 16 the mean free path of the gas, evaluated at tc = 1 and 
n~ = n6~. For  small R, the results of ref. 15 can be fitted by 

t6 (R)  = r2(R) = 1 - (to - 1 )( - 0.205/~ + 0.019/~ 2 - 0.0004R 3) (3.2b) 

In our calculation we used r l(R) for /~> 5.75 and T2(R ) for _R< 1.75; 
in the intermediate range, the data of ref. 15 are well reproduced by the 
interpolating expression 

t ~ ( R ) = J [ ( R - 1 . 7 5 ) r ~ ( R ) + ( 5 . 7 5 - R ) r z ( R ) ]  (3.2c) 

The expressions (3.2), which are linear in ( t o -  1), are sufficiently accurate 
for the cases considered in the next two sections; in Section 6, where we 
shall consider larger values of t o -  1, a more sophisticated way to use the 
results of ref. 15 will be proposed. 

Equations (2.10) and (2.11) will be solved by numerically integrating 
inward from large r. In practice, one must start at a finite R+ ~> R; to 
obtaion a definite starting point we shall first solve the modified problem 
in which t(r) and p(r)  assume their limiting values t ( r )=  1 and p ( r ) =  no~ 
for all r > R + ; the limit R + ~ oc must afterward be taken, in a way to be 
discussed in the next section. For  r >  R+,  (2.11) then reduces to 

v# P =  - v  - v +  P (3.3) 
r a# + ~ "  

The solutions of (3.3) have been discussed extensively elsewhere. (5) For 
large r a solution obeying (3.1c) must have the form 

P ( v , p , r ) - = n v o o r  (3.4a) 

with p(C) the current-carrying Chapman-Enskog solution, which has the 
moments 

v 1 1 (C) _ ~  H r ' -  + r ;  nvt(vC)=- 
r 

f o  f + l  1 n(vC ) 1 ;(c) 2~ dv v 2 dkt v/~P (c)= -- '  = -  
Jr ~- --1 r 2~ r 

(3.4b) 
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If we neglect the exponential terms in (3.4a), then (2.10b) for r >  R+ reads 

d -&L +~c --6-~-- PG= nV~176 t r  3 r ) J  7 

with the solution 

~ C  p a ( r ) =  p a  ~ - -  ( r > R + )  
r 

For the total pressure we obtain from (2.12) 

~ C  
p(r )  = P a ~  -- ~ c +  Pvoo + - -  = Paoo + Pvoo 

r r 

(3.5a) 

(3.5b) 

(r>R+) (3.6) 

whereas for t(r)  we find t ( r ) =  1 for all r >  R+.  Hence the starting assump- 
tions (constant p and t) are satisfied by our solution, and our starting 
assumptions for r > R+ are consistent. 

By further integrating (2.10a, b) inward we obtain 

; to( r )=  1 + q,+~5 dr ( r < R +  (3.7a) 
R+ 

f2 3 p a ( r )  = P a ~  - R+C~--f-C -- Hrr(r) + Hrr(R + ) + + - ( n v t v -  Hrr) (3.7b) 

The constant c can be determined from (3.2) and is given by 

C = - -  r R qr R 

- -  - - d r  

For 2c we use the first-order kinetic expression for the thermal con- 
ductivity of a simple Lennard-Jones gas, (8.2-31) of ref. 12, at a tem- 
perature ta equal to unity in the first iteration and equal to the previous 
value of tG(r) in all subsequent ones. 

As a first step toward a consistent solution of (2.10) and (2.11) we 
solve (3.7) with the input functions n v ( r ) = q , ( r ) = H , r ( r ) = C ~ c = O .  The 
resulting expressions for p(r )  and t(r) are then substituted into (2.11), 
which is then solved in a way to be described presently, yielding values for 
~c,  nv(r ) ,  qr(r), Hrr(r), and t v ( r )  that are in turn substituted into (3.7); the 
procedure is repeated until a sufficient degree of self-consistency is reached. 

To solve (2.11) we use a slight modification of the procedure discussed 
extensively in I. First we expand P in terms of the Burnett functions 
Gk(v, ~): 

P(v, #, r) = @0(v; 1) ~ b,k(r)  t~,k(v, ~)  (3.8) 
n,k=O 
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By using the properties of the tknk, (2.11) can then be transformed into an 
infinite set of coupled ordinary differential equations for the bnk(r). For 
practical calculations this set must be truncated; in contrast to I, we now 
use the sequence of truncation prescriptions 

R~: b~k=0 for k ~ > 2 [ - ~ 1 + 2  (3.9) 

where [x]  denotes the integer part of x. In a notation similar to the one 
used in I, the truncated set of equations can be written as 

S o . - - - d b = [ - - 1 5 ~ +  7--- Co + (t - 1 )  7---C, 
dr r 7~ 7~ 

(n G dt 1 ~pr) 5]_1. b _  V.  b (3.10) 
+ n ~ r d r  p 

with b a vector containing the b~k and the space-independent matrices 5o, 
51, Co, C1, and 1]- defined as in I, apart from the different truncation. Due 
to the new truncation prescription 5o is regular (the truncated set contains 
equal numbers of even and odd moments in k), and (3.10) can be recast in 
the form 

d 
- - b = 5 o l .  V . b  (3.11) 
dr 

We now integrate the set of equations (3.11) numerically inward from 
r = R +, starting with the set of semianalytical Chapman-Enskog and inte- 
rior boundary layer solutions of the truncated version of (3.3). Using the 
regularization procedure described and tested in I, we so obtain the 
Chapman-Enskog and interior boundary layer solutions of (3.10) at r = R. 
Due to the discontinuities in the derivations of p and t at r = R +, a kinetic 
boundary layer with an admixture of exterior boundary layer solutions 
occurs near r = R+,  but these admixtures have died out as one reaches 
r = R if R+ is chosen sufficiently large, and the effects of this spurious 
boundary layer vanish in any case for R+ -+ oo. We then form the unique 
linear combination of these fundamental solutions, with a coefficient n w 
multiplying the equilibrium solution, and c~ c multiplying the current 
solution, that satisfies the boundary condition (3.1a) in the Marshak 
approximation(6'151 

f, vZ dvdllP(v'tl'R)@n'2k+'(v'tl) 
> 0  

= [  vZdvdklns(tD) qSo(V;tD)tp,,.2k+l(v,#) for n+2k<~N (3.12) 
> 0  
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In particular, there is just one value of ec for which such a solution exists. 
This value of c~ c, and the moments nv(r), qr(r), Hrr(r), and tv(r), are then 
used to start the next iteration, starting with (3.7). As we shall show in the 
next section, the procedure converges rapidly, and sufficiently accurate data 
for a given N and R+ are obtained after five iterations. 

4. C O N V E R G E N C E  PROPERTIES 

In the solution scheme for the coupled hydrodynamic and kinetic 
equations (2.10) and (2.11) with given boundary conditions at the droplet 
and at infinity, as outlined in the preceding section, we must make three 
basic approximations: the iterative solution of (2.10) and (2.11) must be 
broken off after L loops; one must choose a cutoff radius R + beyond which 
the pressure and temperature are assumed to be constant; finally, a cutoff 
index N must be chosen for the system of coupled moment equations, as 
specified in (3.9). In principle, the exact solution of our problem should 
emerge in the limit in which L, R +, and N all approach infinity. To obtain 
an estimate for the choices to be made for these cutoff parameters in the 
calculations to be presented in Section 5 and 6, we present here the result 
of calculations for a single set of parameters, but with varying choices for 
L, R+,  and N, in order to check the convergence of our method and to 
provide extrapolation procedures to estimate the limit L, R+,  N--* oo. 

As our parameters we choose T ~ = 4 8 3 . 1 5 K ,  tD=l .15,  no~= 
lOOns(T~), nw=3ns(Too), and R=5l. For the two gases we choose 
Lennard-Jones gases with parameters corresponding to mercury and neon, 
as explained more fully in I and in Section 2. The physical quantity used 
to measure the convergence properties is the growth rate of the mercury 
droplet, 

k -= --jr(R)/?l! (4.1) 

where n~ is the density of liquid mercury at the droplet temperature and 
pressure, and jr(R) is the radial vapor current density at the droplet 
surface, as defined in (3.4). 

The dependence on the number of iteration loops L can be seen from 
the data in Table I. There we list values for/~ obtained for N =  2, R+ = 10/ 
and N =  4, R+ = 100/, for values of L from 1 to 6. In both cases the relative 
difference between L = 5 and L = 6 is of the order 10 -8. Hence we shall use 
the L = 5 approximation in all calculations in the remainder of this section. 

In Table II we show the dependence of k upon R+ for L = 5  and 
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Table I. The Dependence of the Growth Rate/~(R = 5/) 
on the Number of Iteration Loops L, Calculated in 

Ra Approximation for R + - - 1 0  and in R4 Approximation 
for R+ =100  

k • 105 

L N=2/R+ = 10 N=4/R+ = 100 

1 -0.8198342498 -0.8248240147 
2 --0.7963935609 -0.8063344197 
3 --0.7969680885 -0.8065178658 
4 --0.7969611727 -0.8065309312 
5 -0.7969612464 -0.8065304944 
6 -0.7969612472 -0.8065304966 

Tablel l .  The Dependence o f /~ (R=51 )  on R+,  for L - -5  and N = 2 ,  4, 6, 8, 
and 10, Together wi th  the Four-Parameter Fit (4.2), Using Four Consecutive 

Values of the Respective Upper Column 

• 105 

R+ N = 2  N = 4  N = 6  N = 8  N = 1 0  

10 -0.79696125 -0.79156873 --0.78879824 -0.78724268 -0.78635162 
20 -0.80582440 --0.80003111 --0.79717069 -0.79557536 -0.79466156 
30 --0.80860353 --0.80270998 --0.79982004 -0.79821073 -0.79728867 
40 -0.81000261 --0.80406106 --0.80115614 -0.79953959 --0.79861326 
50 --0.81084803 --0.80487816 --0.80196415 -0.80034317 --0.79941422 
60 --0.81141466 --0.80542608 --0.80250596 
70 --0.81182104 --0.80581916 -0.80289465 
80 --0.81212676 --0.80611493 -0.80318712 
90 --0.81236513 -0.80634558 -0.80341519 

100 --0.81255620 -0.80653049 -0.80359804 

Four-parameter fit 
-0.81435091 -0.80826289 -0.80531134 -0.80367176 -0.80273203 
-0781429889 -0.80821766 -0.80526626 --0.80362687 -0.80268689 
-0.81429352 -0.80821289 -0.80526148 
-0.81429354 -0.80821236 -0.80526102 
-0.81429114 -0.80820972 -0.80525898 
-0.81429333 -0.80821295 -0.80526078 
-0.81429122 -0.80821119 -0.80526180 
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N = 2 ,  4, 6, 8, and 10 for several values of R+ between 10/and 100l. Also 
given are estimates for Roo obtained from four-parameter fits of the type 

k ( R  + ) = koo + cl R+ 1 + c 2 R ~  2 + c3R + 3 (4.2) 

for four successive values of R+.  From the results for lower N we see that 
the fit from R+ --20, 30, 40, 50/has a relative accuracy of 10 5. Since the 
discrepancy between the first two fits is similar for the higher values of N, 
this estimate presumably holds for these higher N as well. 

In Table III we list the data so obtained for N = 2, 4, 6, 8, and 10, and 
separately those for N =  3, 5, 7, and 9. Also given are the estimates R~ 
obtained from the three-parameter fit 

k N ( ~ )  = Ro~ + cN -~ (4.3) 

using three successive even or odd N. For  even N the values for / ~  are 
monotonically increasing; for odd N they decrease monotonically. If we 
take the last values in each sequence as lower and upper bond, respectively, 
the final estimate becomes 

k ~  = -0.79970 + 0.00015 (4.4) 

corresponding to a relative accuracy of 2 • 10 4. Values for L =  1 and 
N =  11, 12 were also obtained; they are consistent with the picture sketched 
above. Since the errors remaining in the N ~  ~ extrapolation are at least 
an order of magnitude larger than those resulting from the L and R+ 
cutoffs, the latter error estimate also holds for the procedure as a whole. 

Tablell l. /~N(R+=oo) for N = 2 ,  4, 6, 8,1O and 
N=3,  5, 7, 9, and R~, Obtained from the 

Three-Parameter Fit (4.3), Using Three Successive 
Even- or Odd-N Approximations 

N R • 10 5 N R x 10 5 

2 --0.81429889 3 -0.81381205 
4 --0.80821766 5 -0.80691172 
6 -0.80526626 7 -0.80441016 
8 -0.80362687 9 -0.80313947 

10 -0.80268689 

Three-parameter fit: 
-0.78512130 -0.80018446 
-0.79629497 -0.79985058 
-0.79955337 
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The total pressure pL(r) for L = 1, 2, and 3 in the vicinity of a droplet with radius 
R=51. 

In addition to the values for /~, we also considered the convergence 
with respect to L of the hydrodynamic pressure and temperature profiles 
p(r) and t(r). Both converge rapidly with L. Due to the large thermal con- 
ductivity of Ne, the temperature profile hardly changes as L is increased; 
the total pressure, shown in Fig. 1, becomes nearly constant for higher L 
values, as expected from hydrodynamics, with small deviations, of the 
order of 0.25%, inside the boundary layers. Some further data on the 
hydrodynamic fields are given in Section 6. 

5. T H E  D R O P L E T  C O N D E N S A T I O N  P R O B L E M  

In the present section we apply the formalism developed in Sections 2 
and 3 and tested in Section 4 to the physical problem of droplet condensa- 
tion, treated in ref. 14 for a pure vapor in the context of a fully linear 
theory, and in I using a preliminary version of the present formalism. The 
main difference with the test problem considered in Section 4 is that the 
droplet temperature is no longer considered as given, but is in principle 
also treated as a dynamical variable, which develops in time due to the 
heat of condensation released as vapor condenses, and the heat transported 
away by the gas mixture. Since the heat conductivity of the liquid is much 
larger than that of the gas, we may treat the distribution of heat over the 
droplet as instantaneous, and describe the droplet by a uniform tem- 
perature tD. Moreover, we saw in ref. 14 that for any given droplet radius, 
tD approaches an almost stationary value on a time scale on which the 
droplet radius hardly changes at all. Hence, we shall here determine tD 
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from the problem described in the preceding section by requiring that the 
heat deposited at the droplet by the vapor particles equals the heat carried 
away by the gas mixture. This condition reads 

c 
jr(R)(qo - 2tD) + qr(R) = ~-~ + qr(R) (5.1) 

where qo denotes the equilibrium heat of condensation at tD and c is 
defined in (2.6) and (3.7). The right-hand side equals minus the heat 
carried away by the gas mixture, as is clear from (2.6), and the correction 
term 

6q ~ q r ( R )  - -  2 j r ( R ) t D  (5 .2 )  

takes account of the fact that the vapor particles arriving at the droplet do 
not have a Maxwellian distribution at tD, as is assumed in the definition 
of the equilibrium heat of condensation qo- Equation (5.1) is an implicit 
equation for tD, since c, qo, qr, and Jr all depend on the droplet tem- 
perature tD. In Table IV we present the data obtained for t D and the 
droplet growth rate /~, defined in (4.1), for R = 5 l ,  T~=483.15 K, n ~ =  
lOOns(To),  and nvo~ = 3ns(Too). The extrapolations to N =  oo and R+ = oo 
were carried out as described in the preceding section. The first line gives 
the result obtained in lowest order using the description used in L 2 i.e., in 

2 The result in the first line differs from the one given in Table IV of I, since in the 
earlier paper we evaluated the gas mean free path la in (3.2a) at the total density of the 
mixture; in the present paper we used the partial gas density, since the momen tum 
transfer to the vapor is taken into account explicitly in (2.1l). Using the procedure in I, we 
would have obtained R = (0.261883 _+ 0.000002) x10 -5 ;  the difference from the value 
k = (0.2619 _+ 0.0006)x 10 -5 quoted in I is due to the better convergence of the truncation 
prescription (3.9) compared to D N used in I. 

Table IV. The Growth Rate/7 and the Droplet 
Temperature to, for R = 5 /and  T~ = 483.15 K ~ 

/~ • 10 5 t o A 

0.261165 + 0.000002 1.03492 - -  
0.257147 4- 0.000005 1.03439 - 1.5 % 
0.256311 _+ 0.000002 1.03461 - 1.8 % 
0.253230 4- 0.000070 1.03443 - 3.0 % 

a The first line contains the result in lowest order, in the second 
line all terms in (2.11) are taken into account in the L =  1 
approximation, without the correction of esq. In the third line the 
additional correction 6q is taken into account; the last line 
contains the full L = 5 result. The quantity A is the percentile 
change in R relative to the number  given in the first line. 
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L =  1, neglecting the space-dependent terms in (2.11) arising from the 
inhomogeneity of the background gas, as well as the correction 6q. In the 
second line all terms in (2.11) have been taken into account in the L =  1 
approximation, but 6q is still neglected. In the third line 6q has been taken 
into account; the last line contains the full L = 5 result. The quantity A is 
the respective percentile change in k compared to the first line. 

In the remainder of this section we study the dependence of the solu- 
tion on the radius R and the degree of supersaturation as well as the 
influence of an absorption coefficient different from unity. We shall always 
first give the results obtained by the crudest approximation (neglecting 
space dependences in the background and the correction 6q) and subse- 
quently the corrections following from the more complete and consistent 
treatment. 

In Fig. 2 we show the growth rate /~(X ~ as a function of R for N = 2, 
4, 6, and 8 in the crude approximation used in the first line of Table IV, 
with the temperature jump at the surface determined by (3.2). For R--, 0 
the droplet is no longer able to disturb the equilibrium distribution of the 
vapor, and the droplet temperature can be determined from 

l 
qo[ns(to)x/-~D--noo]/(Zr@/2 = - -2c~1~ (to -- 1) (5.3) 

with cq=--0.205 the constant appearing in (3.2b). The value R(0) 
calculated from this to is indicated by the arrow in Fig. 23; we see from 

3 The slight discrepancy between Fig. 2 and Table IV is due to the fact that the results in 
Table IV were obtained using a somewhat  too rough numerical interpolation for ns(t); all 
further results use the more accurate interpolation used in Fig. 2. 

8 N=2 

t 
I 

"7. 

0 i i 

1 E - O I  I E+O0 1 E + O I  
R--> 

Fig. 2. The growth r a t e / ~  in units of vth as function of R, for N = 2, 4, 6, and 8. The arrow 
indicates the value for R ~.0, calculated via (5.3). 
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Fig. J that the convergence with N is satisfactory, at least for R > 1. In 
Fig. 3 we show the relative corrections to this crude approximation due to 
6q and the background inhomogeneities. The dotted upper and lower 
curves show R2/R(2 °) in the L = 1 and L = 3 approximations, respectively. 
The dashed and solid curves correspond to N =  4 and N =  6; the long- 
dashed curve shows the N ~  oo extrapolation k ~  ), as determined from 
(4.3), divided by R(6 °). Our best estimate for/~ would be obtained by adding 
this correction to the L = 3, N =  6 curve. 

The dependence of k (°) on the supersaturation s - [ V w - n s ( T ~ ) ] /  
ns(T~) at constant noo=lOOns(To~) is approximately linear between 
/~(°)(s = -0 .4)  : -0.545 x 10--6#th and .R(°)(s = 4) = 0.461 x 10-svth (for 
R = 5l), with deviations of at most 9 %. In Fig. 4 we give the relative devia- 
tion RN/~N" ,,~(0) as a function of the supersaturation for N =  2 and L = 1 and 
L = 3, as well as the corresponding results for N =  4 and N =  6. 

To demonstrate the applicability of our formalism to more com- 
plicated boundary conditions, we also treated the case of an absorption 
(and evaporation) coefficient ( 1 - r )  different from unity, with specular 
reflection of the vapor particles that are not absorbed. As in ref. 14, we thus 
replace (3.1a) by 

P(v,#,R)=(1--r)ns(tD)~o(V;tD)+rP(v,--#,R ) for # > 0  (5.4) 

We refer to ref. 14 for further discussion of this assumption. The growth 
rate reduction in the crude approximation /~(N0)(r)/R(N0)(r = 0) for N =  2 and 
N =  6 and R=0 .1 ,  1, 5, 20, and 100 and supersaturation s =  2 is shown in 

1.00  

0 .99  

A 0 . 9 8 -  

• ~ 0 . 9 7 -  

0 . 9 6 -  

0.95 

/ 1 ~  - _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/ / 

L=I 

L=3 

I ~ i I 110 112 
2 4 6 8 

R--> 

N : 2  
- - N : 6  

N=6 

114 116 1t8 
2 0  

Fig. 3. The growth rate /~u(R), including all terms in (2.11) and the correction 6q, divided 
by /~ ) (R) ,  in the L =  1 and L =  3 approximations. The dotted, dashed, and solid curves 
correspond to N =  2, 4, and 6, respectively. The long-dashed curve shows #ml/#{0) 

~ -  oo 1 1 . 6  . 
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Fig. 4. 
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The relative growth r a t e / ~ / / ~ ) ,  defined in the caption of Fig. 3, as a function of the 
supersaturation s, in the L = 1 and L = 3 approximations. 

Fig. 5. The dashed line is the limiting value for R$0 ,  obtained from (5.3) 
with an extra factor of (1 - r )  multiplying the left-hand side. As in ref. 14, 
we see a transition from an almost linear dependence on r for small 4 R to 
a result that is almost independent of r (for r not too close to unity) in the 
heat-diffusion-controlled regime at R~>L The "overshoot" of the R = 0 . 1  

4 In contrast to ref. 14, the dependence of r for R 1.0 is not exactly linear, since the dependence 
of tD on r, which was not included in the calculations in ref. 14, is taken into account in the 
present calculations. 

1 . 0 0  

=2( 080-  ~:i::.:: ::: 

F~ 
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Fig. 5. The lowest order growth rate /~(N ~ as a function of the reflection coefficient r, divided 
by the value for r = 0 ,  for R = 0 . 1 ,  l ,  5, 20, and 100, in the N = 2  (dotted) and N = 6  (solid) 
approximations. The dashed line represents the limiting curve for R ~. 0. 
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Fig. 6. The relative growth rate R2(r)/k(2~ defined in the caption of Fig. 3, for R =  1 
(dotted), 5 (dashed), and 20 (solid). The upper curves correspond to L = 1, the lower ones to 
L = 3, respectively. 

results relative to the R ,L 0 limit is not numerically significant; the poorer 
convergence with respect to N as R decreases was already found and 
analyzed in ref. 5. In Fig. 6 we show the corrections due to 6q and the 
inhomogeneities of the background gas in the L = 1 and L = 3 approxima- 
tions for R = 1, 5, and 20. 

6. STRONG EVAPORATION 

In the problem considered in the preceding section (sometimes called 
the weak condensation or evaporation problem), the temperature of the 
droplet was determined by the balance between the heat of condensation 
released by the condensing gas and the heat conducted away by the sur- 
rounding gas mixture. Due to the steep increase of the saturation density 
with temperature and to the good heat conductivity of the gas, the droplet 
temperature never exceeded the temperature at infinity by more than 5 %, 
even at high supersaturation, and the nonlinear effects, though significant, 
were only moderate in size. This situation may change when additional 
heat is supplied to or withdrawn from the droplet; this is called the strong 
evaporation or condensation problem. It is the aim of the present section 
to explore the extent to which the formalism developed can be used in such 
a context as well, and to see how large the nonlinear effects may become 
in such a situation. Rather than attempting an inclusion of external heat 
sources or sinks into our problem, we return to the case considered in 
Section 4 and solve the boundary layer problem for a range of relative 
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droplet temperatures; the determination of the actual temperature can in 
principle be carried out as in ,Section 5, or with the techniques of ref. 14 
when temperature transients are of interest. 

Before describing the results of this program, we introduce a modifica- 
tion of the temperature boundary condition (3.2) that becomes necessary 
for relative droplet temperatures to that differ markedly from unity. The 
boundary condition (3.2), which can be written in the form 

T~(R) = T o + f (R / IG) (TD-  Too) (6.1) 

with the mean free path It = IG(T~o, Poo~) evaluated for the gas at infinity, 
was developed in the context of a fully linear treatment, in which the 
temperature profile To(r) takes the form 

 o(r) - + - t o o )  --r 

(6.2) 
d f ( R )  R 

To(r) = - ~ (To - Too) r- 5 

The function f was calculated in ref. 15 from an analysis of the kinetic 
boundary layer in the gas at low values t O - 1 = ( T o -  Too)/Too. For larger 
1o--1 it is preferable to consider (6.1) as a relation between the 
temperature jump To - To(R) and the hydrodynamic temperature gradient 
near the droplet surface, and to employ a local mean free path as the 
relevant unit of length. For this purpose we write 

\ I t /  
(6.3) 

dTG(r;dr Too),= =R - f ( ~ ) ( T o - T o o ) R  1 

with 

"[G = lG(Too, pG(R)) (6.4) 

with pc(R) evaluated using (3.7b) and T~ a parameter to be determined 
presently. This expression is compared with the expressions obtained by 
solving (3.7a): 

To (R, c) = Too + qr(r) + dr 
oo 

(6.5) 

drr T*(r; = qr(R ) + 
r = R  
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Fig. 7. The lowest order droplet growth rate /~(o) as a function of the droplet temperature 
tD, calculated without the influence of space dependences in the background gas. Negative 
values of R correspond to evaporation. 

N o t e  that these expressions contain the free parameter c, which can only 
be determined when the boundary condit ion for TG at r = R is known.  The 
two u n k n o w n  parameters ~ and c are now determined by requiring 

To(R; Too)= To(R, c); d ~oo) , = R  d r= To(r; =~ T*(r; c) (6.6) 
R 

where we did not  write the indirect dependences on ~'~ and c via the 
m o m e n t s  of  the vapor distribution appearing in (3.7) explicitly; in solving 

t .50 

1.40- 

I" 
I 1.50- 

~ z  

..~1.20- 

1.10- 

...... N~2 . 

- - - N =  4 / /  
L=3 / /  
jr' 

/ 

1.00 i i f i i 

1.10 1.15 1.20 1.25 1.30 1.35 1.40 
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Fig. 8. The relative growth rate RN(tD)/R~)(tD), as defined in the caption of Fig. 3, in the 
L = 1 and L = 3 approximations, for N =  2 (dotted), 4 (dashed), and 6 (solid). 

822/70/5-6-13 
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Fig. 9. The temperature profile t(r) in the vicinity of a droplet with radius R = 5l, for 
t D = 1,35 and L = 1, 2, 3, 4, and 5. The L = 5 and L = ~ profiles do not differ noticeably. 

(6.6), which must be done anew in each L iteration, the expressions from 
the previous iteration loop are used for these moments. 

With these modified boundary conditions for ta(R) we solved the 
problem of Section 4 for R =  5l, Too = 373 K, nvoo = 3ns(T~), and no~ = 
lOOns(To~) for 1 < tD< 1.4. As expected, the convergence with L becomes 
slower as t D increases, and the method as described in Sections 2 and 3 
breaks down for droplet temperatures t o ~  1.37. In Fig. 7 we show the 
lowest order droplet growth rate k (~ as a function of ID, calculated 
without the influence of space dependences in the backgrotmd gas. For  
high to this growth rate becomes negative, i.e., the droplet evaporates 
under the influence of the externally supplied heat, in spite of the super- 
saturation. In Fig. 8 we provide data for the correction factor 
RN(tD)/R(ON)(tD) both in the L = 1 approximation and in the limit L ~ az 
for several N. From the L = 1 curves we see that thermal diffusion hinders 
the emitted particles in returning to the droplet and hence increases the 
evaporation rate [RI. The effects due to energy and momentum exchange 
amount  to about  40% at to= 1.35; they are thus about an order of 
magnitude larger than in the problem discussed in Section 5. To provide an 
impression of the convergence with L for high tD, we show in Fig. 9 the 
temperature profiles t(r) in the N =  2, R+ = 20 approximation for tD = 1.35 
and several values of L; the L ~ ~ limit is also shown. We see that even 
for this high value of tD, the temperature profile has essentially reached its 
limit for L = 4. 
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7. D I S C U S S I O N  A N D  C O N C L U D I N G  R E M A R K S  

The main result of this paper is the development of a formalism that 
allows one to incorporate a number of the effects of the energy and 
momentum exchange between the vapor and the background gas into the 
Klein-Kramers equation and to solve this equation and the Navier-Stokes 
equations for the background gas in a self-consistent manner. The methods 
developed in I turned out to be completely sufficient to solve these 
modified equations as well for the weak condensation and evaporation 
problem. For the strong evaporation problem, the method designed in ! 
breaks down for temperature differences between droplet and gas in excess 
of about 37 %. One of the reasons for the slow convergence might be the 
use of Burnett functions adapted to To~ in the expansion (3.8). The use of 
a basis adapted to a spatially varying temperature is possible in principle; 
it might lead to some extension of the range of applicability of the 
formalism, but the tests needed to verify this conjecture have not yet been 
carried out. 

In the remainder of this section we discuss the various simplifications 
made in the course of the development of our method and the extent to 
which they can be justified or relaxed. 

The least problematic assumption involves our use of a stationary 
kinetic equation. The growth rates found for the droplets were always of 
the order of (10-5--10-6)Vth. The velocity so transferred to the background 
gas can safely be neglected in the Navier-Stokes equations for the gas. The 
related assumption in Section 5 of a stationary droplet temperature is less 
universally valid. However, the case of an initial temperature different from 
the quasistationary value can be treated (~6~ using the method described in 
ref. 14 and applied there to a droplet condensing from a pure vapor. 

A number of other physical effects can likewise be incorporated 
without much difficulty, since they involve merely the boundary conditions 
imposed at the droplet surface. As examples we mention the dependence of 
the saturation pressure on the droplet radius due to the surface tension 
effects (17) or the heat loss due to radiation. Also, the effect of incomplete 
thermal accommodation of the gas molecules reflected from the surface ~14~ 
or of partial energy accommodation of those vapor molecules not absorbed 
by the droplet can be analyzed in a straightforward manner. 

The most serious approximation involves the replacement of the 
Boltzmann equation for the gas mixture by the modified Klein-Kramers 
equation for the vapor and the Navier-Stokes equations for the gas. Some 
of its shortcomings that were still present in I are alleviated in the present 
paper. Most importantly, the transfer of momentum and energy from the 
vapor to the gas is now taken into account, at least to within the 

822/70/5-  6-13 * 
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approximation that the gas can still be considered in local equilibrium. 
Moreover, since the force terms in (2.11) involve the pressure and tem- 
perature of the mixture, the collisions between the vapor molecules are 
taken into consideration at least to some extent, albeit not in a very 
realistic way (the Brownian approximation certainly does not apply to 
collisions between vapor molecules). However, the inequalities that must be 
satisfied for the Klein-Kramers equation to be valid (high mass ratio 
between vapor and gas molecules, but a low ratio of the mass densities of 
vapor and background gas) are never satisfied very well in practical 
applications, except for very low relative vapor densities; in the latter case, 
however, the droplet temperature for stationary condensation is even lower 
than in the cases considered in Section 5, and the nonlinear effects become 
accordingly less important. Similarly, the condition l>> la, which was used 
to justify neglecting boundary layer effects in the background gas (other 
than the temperature jump), is fulfilled only moderately well. In order to 
estimate the errors made by these approximations, the comparisons, should 
be made either with numerical solutions of the Boltzmann equation (18) for 
the mixture of Lennard-Jones gases mimicked by our Eq. (2.11) or by 
similar calculations using different collision operators. Since in earlier 
calculations (1'5'14) many effects of kinetic boundary layers were found to be 
surprisingly independent of the collision operator chosen, there is a 
possibility that the inadequacy of the collision operator might not have too 
serious consequences in the present case either. 

In principle, the method developed in this paper might be used for an 
arbitrary Boltzmann equation; the general expression 

5~p + cr p) = 0 (7.1) 

with 5 ~ the streaming operator and cg a bilinear collision operator, may be 
replaced by the sequence of linear Boltzmann equations 

5PPk+~(Pk, Pg 1)=0 (7.2) 

with Po the local equilibrium distribution. Each of Eqs. (7.2) could be 
solved using the techniques of I and the present paper, with general bound- 
ary conditions at the droplet surface. However, the convergence properties 
of the sequence (7.2) with increasing k would have to be studied separately 
for each case. A suitable first example would be a collision operator of 
BGK type, (1) where cg depends on just a few moments of Pk 1. 

We applied our method to the spherically symmetric case because for 
that case accurate results from more elementary theories (2'6'14) are available 
and because of the practical importance of the droplet condensation 
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problem. However, the method should be even easier to apply to planar 
kinetic boundary layers, where the choice of the truncation for the system 
of moment equations is likely to be less critical. Applications to the cylin- 
drical case, for which the linear theory corresponding to refs. 2, 14, and 
15 was recently worked out, (19) should also be feasible, at least for the 
Boltzmann collision operator. For the Klein-Kramers case, a semianalytic 
treatment for the case of a linear or logarithmic temperature gradient in the 
background would have to be developed first, to provide a start for the 
numerical integrations from r > R+. 
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